
A major purpose OTthe I echnl-
cal Information Center is to p{ovide
the broadest dissemination possi-
ble of information
DOE’s Research and
Reports to business,
academic community,

contained in
Development
industry, the
and federal,

state and local governments.
Although a small portion of this

report k not reproducible, it is
being made available to expedite
the availability of information on the
research discussed herein.

1

LA-lJR -89-3685
.

LOS Alamos National Lcboralory m OpOfWOd by m. Unworsl~ 01 Calltofnla IOC tho UnNod Stm.s 00PWtm@nt of Energy undef Con!f act W. 7405 .ENG.36

LA-UR--89-3685

DE90 003391

TITLE Creatingthe NextGenerationControlSystemSoftware

AUTHOR(S) David B. Schults

SUBMITTEDTO InternationalConferenceAcceleratorand Large
ExperimentalPhymicsControlSystems
Vancouver,BritishColtmbimCanada
October30, Nov-ber 3, 1989

1)1.S(’I.AIMEI:R

!@&&!k)~~~LosAlamos,NewMexico87545

Los Alamos National Laboratory

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544

Phone: (505)667-4448

E-mail: lwwp@lanl.gov

Creatinc the Next Generation Control System Software

David E. Schultz
Los Alamos National Laboratory

Los Alamos, NM 87545

-Abstract-
A new 1980’s style support package for future
accelerator control systems is proposed. It
provides a way to create accelerator applications
software without traditional programming. Visual
Interactive Applications (VIA) is designed to meet
the needs of expanded accelerator complexes in a
more cost effective way than past ek$erience with
procedural languages by using technology from the
personal computer and artificial intelligence
communities.

1 THE PROBLEM

The three main computer intensive phases of converting an
idea for an accelerator into an accelerator producing beam for
experimenters are: design, commission (calibrate), and operate
(tune, monitor, trouble shoot). Unfortunately, in many cases,
the computer support for thes(. three phases is independent,
i.e., no cross use of software, interfaces, or data is made.
Creating the software for the control system for a new or
expanded accelerato~ i~ a costly and difficult task. The size
of such projects is often ?stimated in the 100’s of man-years
range . This software can be broken up into three basic levels.

1. Operating system interface

2. Library (utility support)

3. Applications programs

The operating system interface level
.

contains the device
drivers and routines that handle any communications protocol.
At most installations, this level is kept as small as porsible
to avoi(l having to retrofit these features each time the
manufacturer makes a major change tc the underlying operating
system. This level is the most sensitive to errors. A failure
here often means that the entire system comes to a crashing
halt.

The library or utility support level is the collection of
utility routines to access data, give device commands, display
output information, and obtain input data. This level may
contain subroutines that convert device descriptors into data
access paths to the device itself. It also contains a host of
other programs designed to make the applications easier to
write. Often the standards for getting and displaying data are
done at this level.

The application program level is the largest. It contains
all the man/machine interface programming and all the algorithms
for manipulatir:g the device data. It uses the library and
operating system interface levels to obtain data, process it,
and display the results. Applications piograms are often
written by a diverse group of people: operators, users, beam
line physicists, professional programmers, and others.

Cross fertilization among design, calibration, tuning,
operation, and diagnosis could speed the total software task,
reduce cost of development and training, provide more powerful
environment to solve the problems of getting an accelerator up,
and reduce the time needed to produde physics results.

2 THE NEED FOR VIA

With the ever increasing cost of producing software and the
increasingly complex accelerator collections needed to reach
desired energies and intensities , software engineers must find
ways to meet the needs to understand and control these complex
accelerators more cost effectively.

Several advanced accelerators have been proposed. All
require substantial software effort. The final design of any of
these new machines will undoubtedly require an evolving sequence
of accelerators, some built and commissioned separately, but all
requiring coordinated timing and controls to operate
successfully. Successful operation will not ~nly include
delivering the promised beam energies and intensities, but also
limiting beam losses, which can result in unacceptable
activation levels in a high intensity accelerator. The final
design will also most likely allow for possible upgrades to the
accelerators ~n both intensity and energy.

At a recent Advanced Hadron Facility (AHF) workshop [1],
the effort required to produce the software needed to operate
one la~ge advanced accelerator facility was estimated at 240-280
man years. DeMarco has estimated [2] that the cost of
delivering the first fully functional version of a software
product is 39% of its total life-cycle cost, This means that
the total life-cycle cost of the AHF software (based on 240 man
years to develop) is about 600 man years. At current costs, the
delivery of the Initial fully functional system comes to about
$43M and the total life-cycle cost in constant 1989 dollars is

over $1OOM. There are several factors that influence this cost:

1. the number of devices

2. the number of different devices

3. the number of accelerators

4. the complexity of the interactions between
accelerators

5. the need for a consistent interface

6. the need to accommodate changes

7. the need for prompt maintenance (both bug fixes
and changes)

Some of these problems can be addressed administratively.
In particular, the number of different devices can be held to a
minimum by developing standards for-common devices and insuring
that all devices of a given class adhere to the standard set.
The number of devices, the number of accelerators, and the
complexity of interactions between the accelerators are all
physics questions that can not be altered by software engineers.
Though it should be noted that attempts to cut costs of
constructing an accelerator by reducing the number of diagnostic
devices may be counter-productive. Any savings in construction
costs may be quickly used up by increases in software,
operations, and tuning. “What can’t be measured, can’t be
controlled” [2] applies to controlling accelerators, IS well as,
controlling projects. The factors that are left that can be
c?ddressed by software engineers are the consistent interface,
the design for change, and the prompt maintenance. One of the
highest costs is the man machine interface. It has been
estimated that 40-60% of a project goes into developing the user
interface.

3 A PROPOSED SOLUTION

Some solutions have been suggested to reduce the estimated
240 man years of effort required to support the AHF [3].
Suggestions include windows, CASE , 00P, and work Stations.
Unfortunately, these suggestions address accidental nut
fundamental problems in software development [4], For chat
reason, the expected gains will be modest. Rather than just
patch the cur~ent software development approach and gain a small
amount, it seems wise to take that small gain and also shoot for
a quantum leap in leverage by fixing the right problem, i.e,
allowing the sources of knowledge to implement ~tandard
maintainable programs without making t]~ose applications or
op~tations experts become professional programmerfi.

The PC revolution of the late 1970’s and early 1980’s
showed that many non-programmers could solve significant
computer problem~ when given the right tool. VISICALC opened
the dGor for a new way to specify an application to a computer
without having to learn how to write traditional programs.
Another recent product eliminates the need to learn to write
Standard Query Language (SQL) formatted requests to obtain
information from a data base management system (DBMS). The
product is INTELLISCOPE from Intellicorp. It is a mouse and
menu interface to select subsets of data from the data base and
process it using a predefined set of mathematical and
statistical tools. The Visual Interactive Applications (VIA)
package adapts the same philosophic~l approach to provide a
powerful tool for accelerator operators and designers. The
adaptation uses the c~llection of devices to take the place of
the data base and provides functions appropriate for accelerator
operations instead of the mathematical or statistical functions.

This basic approach minimizes the amount of applications
software needed to be written using traditional programming
techniques by providing a high level environment tailored to
creating solutions to accelerator control and operation
problems. In this environment you don’t write code; you
assemble pieces (functions) needed and let the tool generate a
program or interpret the functions. This approach provides
leverage in solving the problem.

VIA reduces duplication (f effort, provides a consistent
interface, and supports the major computer intensive tasks of
accelerator implementation. Using VIA to create applications
has a four-fold benefit. First, more people can contribute to
the creation of applications programs. Building an application
is simple, straight-forward, and easy to learn. Second, there
is a reduced need for communication between the application
expert and the programmer because the application expert can be
the creator of the “program”. ‘Third,all applications developed
in the VIA environment meet the standards set up for input,
output, error handling, device naming conventions, and visual
presentation because VIP only generates applications that meet
the starldards, Fourth, all bookkeeping is done by the computer.
Hence, there should be fewer errors and applications should be
Implemented more quickly. In addition, all of the applications
created by VIA have the same look and feel regardless of who the
“programmer” was.

.

3.1 Related Work

‘Itlerehas been a considerable amount of work done in user
interface creation toolkits [5]. Several active research
projects are exploring application frameworks [6,7] or even a
visual programming enviro[~ment [8]. All stop short of really
providing applications without programming. This is because the
functions provided i~,these packages are very low level to allow

fcr the solution of any general programming problem. They are
intended for use by programmers to create traditional programs
in an unrestricted way. VIA is highly tailored for the specific
accelerator ap~l.icatiofl. Neither a text editor nor a pay roll
program can be written with VIA. It is, however, very well
suited for solving accelerator control and operations problems
because the high level functions available are tailored
specifically to that task and to no other. By tailoring VIA to
solve the accelerator control problem, the local computing power
is used to help create the needed software.

3.2 Providing For Easic Needs

Man machine interfaces are critical for the success of an
accelerator control system. Leveled direct manipulation is an
approach that is natural, easy to learn, ~nd is intuitive to
use. It is based on a high resolution graphical/iconic
representation of multiple levels of detail of multiple views of
the various subsystems of the accelerator. A high resolution
pointing device with multi-button and/or menu activated
selection of various attributes and functions associated with
selected device allows the operator to quickly and easily select
what function he wants applied to which devices.

4 COME FEATURES OF VIA

An applications development environment similar to VISICALC
or INTELLISCOPE provides consistency in the ‘;ser interface,
standards for ease of maintenance, repair, and extension, aridan
environment wher~ non-professional programmers can contribute
productively to the creation of application software.
Intellicorp’s INTELLISCOPE product is a mouse and menu interface
that allows selection of a subset of entries from a database and
the subsequent processing of the collected entries. A similar
approach is taken in VIA. VIA just substitutes the set of known
devices on the accelerator for data base and provides functions
appropriate to those devices.

4.1 Selection ”Features

VIA selection criteria:

1. by class

2. by sector

3. by function , e.g., vacuum, RF, cooling

4.

5.

6.

7.

8.

9.

10.

11.

by running mode

by energy

by injector

by ring

by beam pulse flavor and timing constraints

by devices out of tolerance

by device status, i.e., OK, broken, suspect,
unknown

by present device reading (ranges) ●

Figure 1 shows a typical VIA interaction panel. Note the
side board is a pallet of selection choices. Constructing an
application with VIA can be thought of as similar to ordering
from a Chinese menu. Select on”efrom column A and one from
column B.

4.2 Processing Features

The functions provided are related to the phase of the
project.

4.2.1 Designing Needs - External to the control system beam
line designers have long used computer support. Many different
modeling programs are available (TRANSPORT ,TRACE, MARYLIE, MAD,
etc) each has a different beam line input form, beam
representation, capabilities (strengths and weaknesses), and
output. A common interface to all modeling programs used in the
design of a particular accelerator would be extremely useful.
The task of exploring a large design space that is, rnaint.aining
the dependencies between different parts of the design, checking
constraints, applying analysis (simulation), and cataloging
alternate designs, is an immense, almost overwhelming, task,

VIA processing for design

1. transport lattice

2. cooling

3. acceleration

4.

5.

6.

7.

8.

injection

extraction

floor layout

cost

schedule (PERT)

4.2.2 Commissioning Functions - During start-up of an
accelerator beam line, the accelerator physicist tries to find
errors in the system that cause the actual beam Trajectory to
deviate from the desired (design) trajectory. These errors are
typicaliy magnet calibration and construction alignment errors.

VIA processing for commissioning

1. find calibration errors

2. find mis-alignments of active elements

3. find offset errors of diagnostic devices

3just model to reality

5. cost

6. schedule (PERT)

4.2.3 Tuning Functions - Tuning of existing accelerators is
often a long and arduous task.

VIA processing for tuning

1.

2.

3.

4.

5.

6.

sequence devices on

tune for a specific energy

tune for minimum loss

tune for maximum transmission

multiple injector tune

tune for major experiment

raye o

7. tune with constraints, e.9Qt reduce power
cons~,mption

4.2.4 Operating Functions - The operations staff needs to be
able to tune the accelerator, change from one tune to another,
maintain the status quo, i.e., adjust for power supply drift,
and trouble shoot problems that arise.

VIA processing for operations:

1.

2.

3.

4.

5.

6.

7.

8.

monitor

record .

check point (save curren”t settings)

restore save set

interface (assign “kn6b”)

document (for accounting putposes)

change tune (sequence to another accelerator
state)

sequence devices off (shut down)

4.2.5 Diagnostic Functions - Expert systems have been used to
diagnose accelerator problems[9].

VIA processing for diagnosis of problems

1. check for symptoms

2. identify failures

3. suggest remedies

4. log trouble report

5. call appropriate expert

4.3 Output Features

A wide variety of output formats are useful to users.

VIA output formatting options:

1.

2.

3.

4.

5.

6.

7.

8.

graphicaJ.- strip chart

qraphical - x Y plot

tabular - e.g., DSP

historical - graphical or tabular

beam profiles

beam spot size/shape

archival - raw

archival - processed data

5 CONSIDERATIONS

5.1 Cost Considerations

one major concern ou every ambitious software development
project is cost. Though it is impossible to state precise
figures, the 00P technique is knowil to be a cost effective
method for software development and maintenance. A common
operator interface should also reduce documentation and training
costs. It is also expected that some of the support routines
will be shared among the three main functional areas, thereby
reducing the total cost for providing all the features.
Maintenance cost should also be reduced because of the use of
higher level tools and the reduced number of total modules need
to support all the computer intensive accelerator applications.
VIA should reduce development costs and simplify maintenance of
applications. The use of higher level language for development
of an accelerator control system has proven to be beneficial in
the past. Explicitly defined knowledge is easier to change than
implicit knowledge [10].

5.2 Size Considerations

Another major concern on softwart~ projects of this
magnitude is the question- Is the project too big to
successfully complete? There are numerous advantages to using

advanced software technology approach to the AHF software
~;velopment project. The most important from the point of view
of sise is incremental development, Incremental development
encourages prototyping with the goal of producing a working
subset of the system as early as possible [11] This working
subset :

.

.- 2- --

1. provides a psychological boost to the developers

2. can be used to test parts of the system

3. gives users a way to provide feedback

4. allows for performance measurements.

In addition, this approach encourages reusable components,
thereby, reducing the overall number of software objects.

6 SUMMARY

The versatility of VIA allows operators and beam line
physicists, as well as progra~ers, to create useful
functionality. When a particular mix of selection, processing,
and output format is found to be generally useful, it can be
captured for general use by saving the steps used. This allows
incremental building of a set of functions that can be used with
a minimum of typing and/or mouse actions by the operator and a
minimum number of constraints on the builders. It does make the
Control System programmers’ job more difficult because they must
develop general tools not specific applications. However, the
overall effect is to provide a more powerful, more consistent
system that supports more different applications (from more
minds) at a lower overall cost than traditional approaches. The
resulting collection of applications is more consistent because
they are built with the same tool. Consistency of the operator
int~rface and the definition of applications programs is
provided at the tool level and not by way of administrative
controls. If a new technology provides a better interface or
more effective processing, the tool can be upgraded to take
advantage of it and provide the new technology to all the
“applications” automatically.

References

1] AHF 1989 Workshop, LOS Alamos, NM , Feb 20-24, 1989

2]%%-P?9Ps pr0d”ction’TOm‘eMarco’‘0””0”‘ress’‘e”
3] “An Advanced Hadron racility: A Combined Kaon Factory and

Cold-Neutron S)urce,” H. Thiessen, Proceedings of the 1987
Particle Accelerator Conference, Washington, D.C., March 1987.

4] “No Silver Gullet, Essence and Accidents of Sgft,~are Engine~ring,”
Frederick Brooks, COMPUTER, April 1987, p10-19 “

5] “A User Interface Toolkit Based on “Gra ical Objects and
Constraints, “ Pedro A Szekely and Brad A. Meyers, OOPSLA’88
Proceedings, p 36-45

6] “ET++ -An Object-Oriented Application Framework in c++,” Andre
Weinand, Erich Gamma, Rudolf Marty, OOPSLA’88 Proceedin~~, p
46-57

7] “Transportable ~.pplications Ertvironment (TAE) PLUS,” Martha Szczur,
Philip Miller, 00PSLA’88 Proceedings, p 58-70.—

8] “Fabrik A Visual Programming Environment, “ Dan Irlgalls, Scott
Wallace, Yu-Ying Chow, Frank Ludolph, Ken Doyle, 00PSLA’88
‘roceedin~, p 176-190—.——. .

9] “A Fault Diagnosis Expert System fOr CERN using KEE’’,Skarek, P.,
Malandain, E., Pasinelli, S., Alarcon, I.,, CERN/PS 88-12 (CO)

10] “Expert Systems: Periis ai~d Promise’’,Bobrow, D., Mittal, s.,
Stefik, M.,

CACM , September 1986 , Vol 29, NO 9.. PP 880-894

11] “Software Development of Real-Time Systems’’,Gomaa, H. , CACM, July
1986 , VO1 29, NO 7., Pp 657-668

